Backpaper - Computer Science 2 (2021-22)
 Time: 3 hours.
 Attempt all questions, giving proper explanations.

1. How is the number -50.875 stored as a floating point number in the computer ? Give the sign, mantissa and exponent. [6 marks]
2. Consider the solution to $x=\log (3 x+1)$ in $[1,3]$. Consider the iterations $x_{k+1}=\log \left(3 x_{k}+1\right)$. Starting from $x_{0}=\frac{3}{2}$ how many iterations are necessary before we are within 10^{-6} of the solution? [6 marks]
3. Consider solving the equation $f(x)=0$. Describe Newton's method, Secant method and Bisection method. [6 marks]
4. Use Gaussian elimination to solve

$$
\left[\begin{array}{ccc}
1 & 2 & 3 \\
1 & 4 & 1 \\
2 & 1 & 6
\end{array}\right] \mathrm{x}=\left(\begin{array}{c}
1 \\
1 \\
1
\end{array}\right) \quad[6 \text { marks }]
$$

5. Use Gram-Schmidt orthogonalization process to find an orthonormal basis for the span of the following vectors in \mathbf{R}^{4} :

$$
\{(1,2,1,1),(1,0,2,0),(1,3,1,1)\} . \quad[\mathbf{6} \text { marks }]
$$

6. Consider the matrix

$$
\mathbf{A}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 2 & 2 & 2 \\
1 & 2 & 3 & 3 \\
1 & 2 & 3 & 4
\end{array}\right]
$$

Apply the first iteration of the classical Jacobi method: Find the orthogonal matrix \mathbf{P} such that the $(3,4)$ th entry of $\mathbf{A}^{(1)}:=\mathbf{P}^{T} \mathbf{A P}$ is $0 . \quad[\mathbf{6}$ marks]
7. Consider an infinitely differentiable function $f:[0,1] \rightarrow \mathbf{R}$.
(a) Write down the Newton-Cotes formula for $\int_{0}^{1} f(x) d x$ with 4 equally spaced points $0=$ $x_{0}<x_{1}<x_{2}<x_{3}=1 . \quad[4$ marks]
(b) What is the error in approximating the integral by the approximation? [2 marks]
8. Let $f:[0, T] \times \mathbf{R} \rightarrow \mathbf{R}$ be such that

- f is continuous on $[0, T] \times \mathbf{R}$,
- $\frac{\partial f}{\partial t}$ and $\frac{\partial f}{\partial x}$ are bounded on $[0, T] \times \mathbf{R}$.

Consider the solution $x:[0, T] \rightarrow \mathbf{R}$ of the differential equation

$$
\begin{aligned}
\frac{d x}{d t} & =f(t, x), \\
x(0) & =\alpha .
\end{aligned}
$$

Split the interval $[0, T]$ into subintervals of size $h>0$ so that $0=t_{0}<t_{1}<\cdots<t_{n}=T$ with $t_{i}=i h$ are the grid points. Consider the Euler approximation of x on the grid points :

$$
\begin{aligned}
\tilde{x}\left(t_{i}\right) & =\tilde{x}\left(t_{i-1}\right)+f\left(t_{i-1}, \tilde{x}\left(t_{i-1}\right)\right) h, \quad 1 \leq i \leq n \\
\tilde{x}(0) & =\alpha
\end{aligned}
$$

Prove in complete detail that $\sup _{i}\left|x\left(t_{i}\right)-\tilde{x}\left(t_{i}\right)\right|=O(h)$ as $h \rightarrow 0$.

