Backpaper - Computer Science 2 (2021-22) Time: 3 hours.

Attempt all questions, giving proper explanations.

- 1. How is the number -50.875 stored as a floating point number in the computer ? Give the sign, mantissa and exponent. [6 marks]
- 2. Consider the solution to $x = \log(3x+1)$ in [1,3]. Consider the iterations $x_{k+1} = \log(3x_k+1)$. Starting from $x_0 = \frac{3}{2}$ how many iterations are necessary before we are within 10^{-6} of the solution? [6 marks]
- 3. Consider solving the equation f(x) = 0. Describe Newton's method, Secant method and Bisection method. [6 marks]
- 4. Use Gaussian elimination to solve

$$\begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 1 \\ 2 & 1 & 6 \end{bmatrix} \mathbf{x} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \qquad [6 \text{ marks}]$$

5. Use Gram-Schmidt orthogonalization process to find an orthonormal basis for the span of the following vectors in \mathbf{R}^4 :

$$\{(1,2,1,1), (1,0,2,0), (1,3,1,1)\}.$$
 [6 marks]

6. Consider the matrix

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 \\ 1 & 2 & 3 & 3 \\ 1 & 2 & 3 & 4 \end{bmatrix}$$

Apply the first iteration of the *classical Jacobi method*: Find the orthogonal matrix \mathbf{P} such that the (3, 4)th entry of $\mathbf{A}^{(1)} := \mathbf{P}^T \mathbf{A} \mathbf{P}$ is 0. [6 marks]

- 7. Consider an infinitely differentiable function $f:[0,1] \to \mathbf{R}$.
 - (a) Write down the Newton-Cotes formula for $\int_0^1 f(x) dx$ with 4 equally spaced points $0 = x_0 < x_1 < x_2 < x_3 = 1$. [4 marks]
 - (b) What is the error in approximating the integral by the approximation? [2 marks]
- 8. Let $f:[0,T] \times \mathbf{R} \to \mathbf{R}$ be such that
 - f is continuous on $[0, T] \times \mathbf{R}$,
 - $\frac{\partial f}{\partial t}$ and $\frac{\partial f}{\partial x}$ are bounded on $[0, T] \times \mathbf{R}$.

Consider the solution $x: [0,T] \to \mathbf{R}$ of the differential equation

$$\frac{dx}{dt} = f(t, x),$$
$$x(0) = \alpha.$$

Split the interval [0,T] into subintervals of size h > 0 so that $0 = t_0 < t_1 < \cdots < t_n = T$ with $t_i = ih$ are the grid points. Consider the Euler approximation of x on the grid points :

$$\tilde{x}(t_i) = \tilde{x}(t_{i-1}) + f(t_{i-1}, \tilde{x}(t_{i-1}))h, \quad 1 \le i \le n$$

 $\tilde{x}(0) = \alpha.$

Prove in complete detail that $\sup_i |x(t_i) - \tilde{x}(t_i)| = O(h)$ as $h \to 0$. [8 marks]